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ABSTRACT

Strongly coupled land–atmosphere data assimilation has not yet been implemented into operational nu-

merical weather prediction (NWP) systems. Up to now, upper-air measurements have been assimilated

mainly in atmospheric analyses, while land and near-surface data have been assimilated mainly into land

surface models. Thus, this study aims to explore the benefits of assimilating atmospheric and land surface

observations within the framework of strongly coupled data assimilation. Specifically, we added soil moisture

as a control state within the ensemble Kalman filter (EnKF)-based Gridpoint Statistical Interpolation (GSI)

and conducted a series of numerical experiments through the assimilation of 2-m temperature/humidity and

in situ surface soil moisture data along with conventional atmosphericmeasurements such as radiosondes into

the Weather Research and Forecasting (WRF) Model with the Noah land surface model. The verification

against in situ measurements and analyses show that compared to the assimilation of conventional data,

adding soil moisture as a control state and assimilating 2-m humidity can bring additional benefits to analyses

and forecasts. The impact of assimilating 2-m temperature (surface soil moisture) data is positive mainly on

the temperature (soil moisture) analyses but on average marginal for other variables. On average, below

750 hPa, verification against the NCEP analysis indicates that the respective RMSE reduction in the forecasts

of temperature and humidity is 5% and 2% for assimilating conventional data; 10% and 5% for including soil

moisture as a control state; and 16% and 11% for simultaneously adding soil moisture as a control state and

assimilating 2-m humidity data.

1. Introduction

Over land, conventional data such as in situ surface

weather observations and radiosondes are routinely in-

corporated in numerical weather prediction (NWP).

Among various types of conventional observations,

surface temperature and humidity are closely inter-

twined with land surface soil moisture, which is consid-

ered the most critical variable in land surface modeling

(Santanello et al. 2019; Lin and Pu 2018). Soil moisture

directly affects near-surface temperature and humidity

forecasts via estimates of sensible and latent heat fluxes.

However, in current NWP practices, conventional data

are assimilated mainly within the atmospheric component

where atmospheric variables such as temperature, hu-

midity, winds, and pressure are used as control analysis

states while land surface soil moisture is not. To fur-

ther improve near-surface weather forecasts and land–

atmosphere interactions within NWP, researchers and

operational centers have been studying and implementing

coupled data assimilation (e.g., Duerinckx et al. 2017; de

Rosnay et al. 2013; Carrera et al. 2019; Munoz-Sabater

et al. 2019). In almost all cases, assimilation of both land

surface and atmospheric observations has been done in a

framework of weakly coupled data assimilation (WCDA),

with which land surface and atmospheric data analyses are

performed separately. In contrast, the idea of strongly

coupled data assimilation (SCDA) in NWP is relatively

new and has not yet been implemented into any opera-

tional system to date. SCDA requires the estimation of

cross-model error covariance and the simultaneous as-

similation of both land and atmospheric measurements

(Penny et al. 2017; Penny and Hamill 2017). In a previous

study (Lin and Pu 2019), we found that SCDA has the

potential to mitigate discrepancies between the interface

of land–atmosphere data analysis andmaximize the impact

of land–atmosphere observations.
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Direct assimilation of near-surface atmospheric ob-

servations into NWP models has demonstrated its im-

portance for weather forecasts over land, especially in

the lower troposphere (Pu et al. 2013; Zhang and Pu

2014, Pu 2017). For instance, Ha and Snyder (2014) as-

similated 2-m temperature and humidity and 10-mwinds

in addition to conventional upper air data into the

Weather Research and Forecasting (WRF) Model, dem-

onstrating that assimilation of surface data reduced the

forecast error of near-surface temperature and humidity

by approximately 7% and 15%, respectively, and the error

of near-surface winds by less than 5%. Ingleby (2015)

studied the added value of assimilating surface observa-

tions in the Met Office global NWP system and concluded

that assimilating near-surface winds has little impact, as-

similating surface pressure data improves mainly fore-

casts of surface pressure, and simultaneously assimilating

screen-level temperature and humidity measurements

improves forecasts of near-surface temperature and hu-

midity. Benjamin et al. (2010) and James and Benjamin

(2017) quantified the impact of assimilating surface data

in the Rapid Update Cycle (RUC) and its later version

Rapid Refresh (RAP) based on the WRF Model. These

two studies found that the assimilation of surface winds,

pressure, temperature, and humidity data improved

summertime weather forecasts in the lower troposphere

(i.e., below 800hPa) more than the assimilation of data

from sounding, aircraft, global positioning system

(GPS), and Geostationary Operational Environmental

Satellites (GOES).

Progress has also been made in assimilating near-

surface observations such as 2-m temperature and hu-

midity and land surface soil moisture in a WCDA

framework in NWP. In WCDA, soil moisture observa-

tions are assimilated into a land surface model, while the

atmospheric component is affected by the land surface

model mainly through land–atmosphere interactions. In

the Aire LimitéeAdaptationDynamiqueDéveloppement

International (ALADIN) system, several studies have as-

similated 2-m temperature and humidity and soil moisture

retrievals using an extended Kalman filter but generally

found a marginal impact on forecasts of 2-m temperature

and humidity (Mahfouf 2010; Mahfouf and Bliznak 2011;

Duerinckx et al. 2017). The global systems at theEuropean

Centre for Medium-RangeWeather Forecasts (ECMWF)

and Environment and Climate Change Canada (ECCC)

are also capable of simultaneously assimilating 2-m

temperature/humidity and surface soil moisture into

their land surface systems. In ECMWF and ECCC, it is

found that assimilation of surface soil moisture leads to

much improved model skill for both surface and root-

zone soil moisture compared to the assimilation of

temperature and humidity (de Rosnay et al. 2013;

Carrera et al. 2019; Munoz-Sabater et al. 2019); how-

ever, the improvement in the forecasts of 2-m temper-

ature and humidity is seen mainly when assimilating

near-surface temperature and humidity. Zheng et al.

(2018) assimilated satellite soil moisture retrievals into

the National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS) using an en-

semble Kalman filter (EnKF) and found improved

temperature and humidity forecasts over the contig-

uous United States up to 500mb. Research efforts

have also focused on the assimilation of surface soil

moisture measurements on a regional scale (Schneider

et al. 2014; Santanello et al. 2016; Seto et al. 2016; Lin

et al. 2017a,b). Nevertheless, no progress has yet been

made in implementing strongly coupled land–atmosphere

data assimilation in NWP practices.

In our recent studies (Lin and Pu 2018, 2019), we

highlighted the potential of strongly coupled land–

atmosphere data assimilation in a variational data as-

similation framework. In the first study (Lin and Pu 2018),

we found that the error correlation between surface soil

moisture, temperature, and humidity within the Noah

land surface model coupled to WRF (WRF-Noah)

was comparable, suggesting that 1) part of the error in

surface soil moisture comes from atmospheric forc-

ing, and 2) atmospheric initial conditions could poten-

tially be corrected via soil moisture data assimilation.

Then, in subsequent work (Lin and Pu 2019), we found

that, over the U.S. Great Plains, the assimilation of

NASA Soil Moisture Active Passive (SMAP) soil mois-

ture retrievals intoWRF-Noah under SCDA can provide

additional benefits to forecasts of near-surface tempera-

ture and humidity as well as precipitation compared to

that under WCDA. For example, WCDA leads to a bias

reduction of 7.3% and 19.3% in 2-day forecasts of

temperature and humidity, respectively, while SCDA

contributes an additional bias reduction of 2.2% (tem-

perature) and 3.3% (humidity). As a natural extension

of this previous work, to further understand the relative

importance of near-surface and land surface observa-

tions in NWP, we have implemented the framework

of strongly coupled land–atmosphere data assimi-

lation using the operational Gridpoint Statistical

Interpolation (GSI) with EnKF and simultaneously as-

similated 2-m temperature/humidity and land surface soil

moisture into WRF with the Noah land surface model.

The implementation includes 1) adding the soil moisture

of all four Noah soil layers as a control analysis state

and 2) assimilating soil moisture observations along

with conventional atmospheric data simultaneously.

In this study, we aim to understand the impact of

adding soil moisture as a control analysis state and the

relative effect of assimilating surface temperature,
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humidity, and soil moisture data on short-term weather

forecasts.

The rest of the paper is organized as follows. Section 2

explains the configuration of the WRF Model and

GSI-EnKF system, the implementation of strongly cou-

pled land–atmosphere data assimilation, the experiment

design, and the corresponding evaluationmetrics. Section 3

describes the ensemble structure of the implemented

coupled data assimilation system and the verification of

the analyses and forecasts. Section 4 includes a discussion

and the conclusions.

2. Methodology

a. Configuration of WRF-Noah model and domain

This study uses WRF version 3.9.1 with the Advanced

Research WRF (ARW) solver (Skamarock et al. 2008;

Powers et al. 2017). The WRF Model is a mesoscale

weather prediction system for both research and oper-

ations and is currently maintained by the National

Center for Atmospheric Research (NCAR).We employ

the physics suite that is well tested over the contiguous

United States (CONUS) (see theWRFuser guide at http://

www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/

contents.html). The CONUS suite includes the new

Thompson microphysics scheme (Thompson et al. 2008),

the Tiedtke cumulus parameterization scheme (Tiedtke

1989; Zhang et al. 2011), the new-version Rapid Radiative

Transfer Model for GCMs (RRTMG) for longwave and

shortwave radiation (Iacono et al. 2008), the Mellor–

Yamada–Janjić planetary boundary layer scheme (Janjić

1994), the Monin–Obukhov Eta similarity surface layer

scheme (Janjić 2002), and the Noah land surface model

(Chen and Dudhia 2001). The Noah land surface model

has four default soil layers with thicknesses of 10, 30, 60,

and 100cm from top to bottom.

A single domain of the Lambert conformal projec-

tion is configured with a resolution of 9 km and 120 3
150 grid points (Fig. 1a). We selected a domain over

the central United States because this area is known for

strong summertime land–atmosphere interactions (Koster

et al. 2004, 2006; Dirmeyer et al. 2009). The model top

pressure level is set at 50hPa with 40 atmospheric layers

below. Due to the use of sigma levels, the pressure of each

atmospheric layer varies by location. The average pressure

of each layer is shown in Fig. 1b.

b. Data

The NCEP 0.258 Final Analysis (FNL) is used for

providing boundary conditions. The NCEP FNL is

produced based on GFS with the Noah land surface

model, and thus the land surface boundary conditions

from GFS-Noah are inherently consistent with our

WRF-Noah experiments. The NCEP conventional

upper air and surface weather observations that are

routinely assimilated into the NCEP Global Data

Assimilation System are used. From the conventional

dataset, our numerical experiments assimilate radio-

sonde, surface data, and radar-derived winds, while

radiosonde and 2-m temperature and humidity measure-

ments are also used for verification. The International Soil

Moisture Network (ISMN) collects various independently

operated soil moisture networks to provide quality-

controlled data in a unified format (Dorigo et al. 2013).

FIG. 1. (a) Study domain and in situ sites and (b) average pressure levels of each configured atmospheric layer.

There is a total of 20 in situ soil moisture stations and 12 radiosonde sites.
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From ISMN, the soil moisture measurements from

the Soil Climate Analysis Network (SCAN; Schaefer

et al. 2007) and the Climate Reference Network

(CRN; Diamond et al. 2013) are assimilated and

used for verification. Note that the soil moisture ob-

servations at a depth of 5 cm are used in both data

assimilation and verification, as we aim to under-

stand how well the new implementation works. The

NCEP North American Mesoscale Forecast System

(NAM) 12-km analysis is used for verifying the at-

mospheric analyses and forecasts in the WRF-Noah

experiments. The sources of these datasets are stated

in the acknowledgments.

c. GSI-EnKF and the implementation of soil moisture
data assimilation

This research uses the community GSI-EnKF with

version 3.6 of GSI and version 1.2 of EnKF, which is

currently maintained by the NCAR Developmental

Test bed Center. GSI-EnKF uses a two-step configura-

tion. The first step is to compute the innovations for the

ensemble mean and each ensemble member using the

observation forward operator in GSI (Shao et al. 2016),

and in the second step, the analyses of each member are

computed based on the EnKF (Whitaker and Hamill

2002; Whitaker et al. 2008). Following the notation of

Ide et al. (1997), the optimal analysis state xa in the

EnKF is described as follows (Lorenc 1986; Whitaker

and Hamill 2002):

xa 5 xb 1K(yo 2Hxb) , (1)

where

K5PbHT(HPbHT 1R)21 . (2)

In these two equations, xb denotes the background

model forecast; yo is the vector of observations; H is the

linear operator that converts the model state to the

observation space; andPb andR are the background and

observation error covariance matrices, respectively.

Let us describe an ensemble mean with an overbar

and a deviation from the mean with a prime. In the

EnKF, Pb is estimated using the sample covariance from

an ensemble of model forecasts and is described as

Pb 5 x0bx0bT [
1

n2 1
�
n

i51

x0bx0bT , (3)

where n is the ensemble size and x0b is the deviation from
its ensemble mean, xb. The update equations for the

EnKF may be further written as

xa 5 xb 1K(yo 2Hxb) , (4)

x0a 5 x0b 2 ~KHx0b , (5)

where K is the traditional Kalman gain, while ~K is the

gain used to update deviations from the ensemble mean

for each ensemble member. In GSI-EnKF, ~K is esti-

mated as

~K5aK , (6)

a5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

HPbHT 1R

s !21

. (7)

In GSI-EnKF, observations are processed serially, one

at a time. Thus, HPbHT and R in Eq. (7) are actually

scalars in the computation.

We chose an ensemble size of 40, which is quite com-

mon in regional ensemble-based studies (e.g., Schwartz

et al. 2015; McNicholas andMass 2018). We obtained the

initial and lateral boundary conditions of the ensemble

members by adding random perturbations drawn from a

global error covariance matrix using the RANDOMCV

tool in the WRF Data Assimilation System (WRFDA)

(Barker et al. 2004; Torn et al. 2006). The standard de-

viations of the initial perturbations are approximately

1.2 (K) for potential temperature, 1.1 (gkg21) for specific

humidity, and 2.6 (ms21) for zonal and meridional winds

within the troposphere under 200mb. To keep a reason-

able ensemble spread and avoid filter divergence, a tun-

able inflation coefficient can be set to adjust the posterior

ensemble spread to match the prior ensemble spread

(relaxation-to-prior spread; Whitaker and Hamill 2012).

The inflation coefficient ranges from 0 (no inflation) to 1

(i.e., both prior and posterior ensemble spread are of the

same magnitude). This study set the inflation coefficient

at 0.9, a magnitude similar to Schwartz et al. (2015) and

Lei et al. (2016, 2018).

A set of vertical and horizontal localization parame-

ters is used to reduce spurious correlations caused by

sampling errors (Gaspari and Cohn 1999). For example,

several GSI-EnKF studies (Lei et al. 2016, 2018) set the

parameters at around 1250km for horizontal localization

and 1.0 scale height for vertical localization, meaning

there was no impact on the analysis beyond these ranges

of a given observation point. However, these GSI-EnKF

studies were done mainly on a global scale and with

coarser model resolution than our experiments. To find a

better choice of localization on a regional scale, we

performed a week of GSI-EnKF experiments, cycling

every 6h during 1–7 July 2018 by assimilating conven-

tional data, including radiosondes, radar-derived winds,

and surface pressure data using the abovementioned

settings. We used various localization parameters, in-

cluding a combination of horizontal parameters of 300,
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500, and 800km and vertical scale height parameters of

0.2, 0.4, and 0.6, in addition to one using a horizontal

parameter of 1250km and a vertical scale height param-

eter of 1.0. The WRF-Noah analyses of temperature,

humidity, and winds were verified against the NAM

analysis. In terms of bias and root-mean-square error

(RMSE), the model skill with the parameters of 1250km

and 1.0 scale height is the worst, while that with 500km

and 0.4 scale height is considered the best (not shown).

Below we continue to use the localization of 500km

(horizontal) and 0.4 scale height (vertical) for the main

experiments of the study (see Table 1).

We have two main implementations in GSI-EnKF for

assimilating soil moisture observations via strongly cou-

pled land–atmosphere data assimilation. The first is to

include the soil moisture of all four Noah soil layers as a

control state, together with other commonly used control

analysis states including potential temperature, specific

humidity, zonal andmeridional winds, and surface dry air

pressure. In GSI-EnKF, the pressure level of each at-

mospheric control analysis state is used for vertical lo-

calization. Thus, to ensure that the added soil moisture

analysis state is compatible with the localization scheme,

we set all four layers of soil moisture as a state at the

surface by assigning surface pressure information at a

given grid point. In the second implementation, we added

soilmoisture as a new typeof conventional data and chose a

standard deviation observation error of 0.04 (m3m23).

This error value is consistent with several other studies that

assimilated soil moisture data (e.g., Lin et al. 2017a,b), but

it is certainly worthy of further investigation.

To understand the effect of localization and soil

moisture observation error, we performed a single ob-

servation assimilation test. We chose to assimilate a

single synthetic surface soil moisture observation with

an ensemble-mean innovation of 0.0138 (m3m23) near

the center of the study domain based on the ensemble

first guess fields at 0000 UTC 3 July 2018 from experi-

ment VarwSM_CONV_SM (see Table 1). The surface

pressure of this assimilation site is 971 hPa. Single data

assimilation tests with observation errors of 0.04 and

0.01 (m3m23) were conducted. Figure 2a clearly shows

that there is no observational impact on the analysis

beyond 500 km, given the horizontal localization used.

Figure 2c shows that the surface data have no impact on

the analysis above layer 12 (i.e., approximately 700 hPa,

see Fig. 1b) due to the effect of vertical localization. In

addition, from Figs. 2b and 2c, we can see that the ob-

servation error of 0.01 has a uniformly larger impact on

the analysis (i.e., around 60% larger) than the error

of 0.04.

d. Experimental design

Table 1 lists the numerical experiments performed in

this study. The experiments were carried out from 1 to

28 July 2018, and the forecasts were cycled every 6 h. In

addition to the cycling runs, we launched a 3-day fore-

cast based on the GSI-EnKF analyses valid at 0000 UTC

every 24h during the study period to investigate the

impact of data assimilation on short-range weather

forecasts. Each of the experiments consists of 40

ensemble members. Overall, we have one one-loop

experiment (OPNL) without any data assimilation; four

data assimilation experiments using the commonly used

atmospheric control analysis states (VarwoSM_*); and

six data assimilation experiments that have soil moisture

as an additional control analysis state (VarwSM_*).

VarwoSM_CONV is also named as CNTL, as a control

experiment with conventional data assimilation and

control analysis states. The conventional data in the

experiments include radar-derived winds, surface pres-

sure, and radiosonde temperature, humidity, and winds.

The 2-m temperature and humidity observations are

assimilated in selected experiments to understand their

TABLE 1. List of experiments. The various control analysis states include potential temperature (T), specific humidity (Q), zonal wind

(U), meridional wind (V), surface dry air pressure (MU), and land surface soil moisture (SM). The assimilated data types contain 2-m

temperature and humidity and surface soil moisture (SSM) at a depth of 5 cm as well as conventional atmospheric observations, including

radiosondes, radar-derived winds, and surface pressure.

No. Expt Control states Assimilated observations

0 OPNL — —

1 VarwoSM_CONV (CNTL) T, Q, U, V, MU Conventional data

2 VarwoSM_CONV_T2 T, Q, U, V, MU Conventional data 1 T2

3 VarwoSM_CONV_Q2 T, Q, U, V, MU Conventional data 1 Q2

4 VarwoSM_CONV_T2Q2 T, Q, U, V, MU Conventional data 1 T2 1 Q2

5 VarwSM_CONV T, Q, U, V, MU, SM Conventional data

6 VarwSM_CONV_T2 T, Q, U, V, MU, SM Conventional data 1 T2

7 VarwSM_CONV_Q2 T, Q, U, V, MU, SM Conventional data 1 Q2

8 VarwSM_CONV_T2Q2 T, Q, U, V, MU, SM Conventional data 1 T2 1 Q2

9 VarwSM_CONV_SM T, Q, U, V, MU, SM Conventional data 1 SSM

10 VarwSM_CONV_T2Q2SM T, Q, U, V, MU, SM Conventional data 1 T2 1 Q2 1 SSM

JULY 2020 L I N AND PU 2867

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:03 PM UTC



relative impact on forecasts. Figure 3 shows the sample

size of observations at various times in a day, averaged

over the study period. At 0600 and 1800 UTC, there are

less conventional data for temperature, humidity, and

winds, which is due mainly to the measuring time of the

radiosonde at 0000 and 1200 UTC.

Surface soil moisture observations from ground-based

stations from SCAN and CRN are assimilated. A total

of 31 soil moisture stations are spread across the study

domain. We manually examined the top 10-cm soil

moisture OPNL forecasts at a grid cell nearest to the

SCAN/CRN stations with SCAN/CRN measurements

at a depth of 5 cm every 6 h during 1–28 July 2018. We

removed the stations when 1) themeasurements showed

substantial regular diurnal variation on dry days or no

temporal variability and 2) the bias between the fore-

casts and measurements was greater than twice the

chosen observation error (i.e., 0.04m3m23). We also

removed one of the dual stations that was located at the

same place. As a result, the VarwSM_CONV_SM and

VarwSM_CONV_T2Q2SM experiments assimilate the

soil moisture measurements at a depth of 5 cm from the

remaining 20 stations.

This study does not perform any bias correction over the

assimilated observations due to assimilation of conven-

tional atmospheric data and in situ soil moisture observa-

tions. It is common to assimilate conventional data without

bias correction. This is particularly helpful in exploring the

effectiveness of the implemented soil moisture data as-

similation in GSI-EnKF.

FIG. 2. Comparison of the temperature analysis increment in the single synthetic soil moisture observation test

with the use of two different observation errors [i.e., 0.04 and 0.01 (m3m23)], including (a) the analysis increment of

bottom-layer air temperature (T1 with a unit in K), (b) the ratio of the absolute T1 analysis increment from the

results of using the error of 0.01 over those of using the error of 0.04, (c) the domain-mean values of absolute

temperature analysis increments, and (d) the ratio of domain-mean values from the result of using the error of 0.01

over those of using the error of 0.04. The black cross indicates the site of single assimilated soil moisture data.
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e. Evaluation method

To quantify the performance of the experiments, we

adopt the metrics of bias, RMSE, and Pearson’s corre-

lation coefficient (r). Note that the metric of the corre-

lation coefficient is computed mainly for evaluating soil

moisture. To evaluate the relative impact (RI) in terms

of these metrics between each data assimilation exper-

iment relative to OPNL, we further use the following

equations:

RI
Bias

5

�
12

����BiasDA

Bias
OL

����
�
3 100%, (8)

RI
RMSE

5
RMSE

OL
2RMSE

DA

RMSE
OL

3 100%, (9)

RI
r
5

r
DA

2 r
OL

12 r
OL

3 100%, (10)

where DA and OL denote the data assimilation and

open-loop experiments, respectively. An RI value of

0% indicates a neutral effect due to data assimilation,

while a value of 100% shows the best possible scenario.

Throughout our 4-week cycling experiments during

1–28 July 2018, the first week is considered spinup, and

we verify mainly the analyses and forecasts initialized

after 0000 UTC 8 July.

3. Results

a. Examination of the GSI-EnKF ensemble structure

We first examine the ensemble structure such as the

ensemble mean and spread. Figure 4 shows the ensemble

mean and spread of soil moisture from selected experi-

ments for brevity. The time–space-averaged ensemble

mean and spread values were computed based on the first

guess of each 6-h cycle during 1–28 July 2018. The results

show that the assimilation experiments generally lead to

wetter soils, especially for the upper three soil layers

(Figs. 4a–d). The positive soil moisture analysis incre-

ments are directly attributed to assimilated atmospheric

measurements and will be discussed later (see Figs. 5

and 6). In terms of ensemble spread, adding soil mois-

ture as a control state often results in a reduced mag-

nitude, particularly for the upper three layers (Figs. 4e–h).

We also found that the magnitude of the GSI-EnKF en-

semble spread is very comparable with that in Lin et al.

(2017a), which used an approach called the National

Meteorological Center method (Parrish and Derber 1992)

to estimate the soil moisture background error of the

WRF-Noah model analytically. From Fig. 4 in Lin et al.

(2017a), the space–time-averaged error standard deviation

of soil moisture in the summer over the contiguous

United States is approximately 0.015, 0.007, 0.003, and

0.0015 (m3m23) for the layers from top to bottom,

quite similar to the values in Figs. 4e–h.

We further investigate the ensemble mean and spread

of the atmospheric control states by using the first

guesses (i.e., 6-h forecasts from the previous cycle) every

6 h during 1–28 July 2018 and averaging over the domain

and cycles (Fig. 5). In terms of the ensemble mean,

Figs. 5b and 5f show that the assimilation experiments

lead to cooler and wetter air in the lower troposphere,

particularly below approximately 700 and 850 hPa for

temperature and humidity, respectively. Assimilation of

2-m humidity data (i.e., VarSM_CONV_Q2) results in

even cooler and wetter air than assimilation of other

types of atmospheric data. For winds, data assimilation

results in a reduced magnitude at around 750hPa for

zonal wind and below 750hPa for meridional wind.

Regarding the ensemble spread, as is obvious, data as-

similation leads to a reduced magnitude for all atmo-

spheric control states (Figs. 5d,h,l,p). We also found that

the magnitude of the ensemble spread in Figs. 5c, 5g, 5k,

FIG. 3. Temporal average size of assimilated observations at various times during the study period. Conventional data (CONV) include

radar-derived winds and surface pressure, and radiosonde temperature, humidity, and winds.
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and 5o is comparable with that of the background error

standard deviation in Lin and Pu (2018), estimated ac-

cording to the WRF-Noah simulations of multiple years

using the NMC method (see Fig. 3 in Lin and Pu 2018).

This suggests that the perturbation added in the boundary

conditions and the GSI-EnKF setting is reasonable on a

regional scale.

Cross-variable influence is another crucial component

in strongly coupled data assimilation and is illustrated in

Fig. 6. We computed the temporal correlation of the

analysis increments from the states of soil moisture and

atmospheric variables based on the results of every 6-h

cycle during 1–28 July 2018. To categorize the diurnal

variability, we also calculate the correlation coefficients

for three time zones using samples valid at 0000 and

1800 UTC (day), 0600 and 1200 UTC (night), and

combined (all). For brevity, we examine the results for

the soil moisture of all four soil layers but only for the

atmospheric variables of the bottom atmospheric layer

from experiment VarSM_CONV. It is noted that there

is only a marginal difference in cross-variable influence

when the results from VarSM_CONV are compared to

FIG. 4. Ensemble mean and standard deviation (SDEV) of soil moisture first guesses at different layers: the top

10-cm soil layer (SM1), 10–40-cm layer (SM2), 40–100-cm layer (SM3), and bottom 1-m layer (SM4).
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those from other experiments (not shown). According to

the results at all times, Fig. 6 shows that assimilated

observations tend to impact the analysis states of tem-

perature and humidity simultaneously, but the impact is

in a contrasting direction or sign. It is also clear that the

deeper soil moisture state becomes less sensitive to the

assimilated atmospheric observations. In addition, soil

moisture tends to react simultaneously with tempera-

ture and humidity during the analysis procedure, but the

direction (or sign) of the soil moisture analysis increment is

on average opposite to that of the temperature analysis

increment. The winds appear to have the smallest cross-

variable influence via data assimilation. In terms of diurnal

variability, the magnitude of the daytime correlation is

FIG. 5. Ensemble mean and spread (SDEV or standard deviation) of atmospheric first guesses for potential temperature (T), specific

humidity (Q), zonal wind (U), and meridional wind (V) during the study period.
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clearly much larger than that of nighttime correlation.

These findings are consistent with those of Lin and

Pu (2018).

We further integrate the results from Figs. 5 and 6 to

understand why the assimilation of atmospheric mea-

surements leads to a wetter soil against OPNL in those

experiments with soil moisture as a control state (i.e.,

those start with VarwSM_* in Fig. 4). Taking the anal-

ysis increments of temperature as an example (Fig. 5b),

the data assimilation leads to a cooler temperature

against OPNL near the surface with negative tempera-

ture analysis increments on average. Since the analysis

increments between air temperature and soil moisture

act in a reverse direction (or sign) shown in Fig. 6a, it is

expected that data assimilation would result in a positive

analysis increment in soil moisture on average and a

wetter soil, compared with OPNL. Similarly, the average

analysis increment of air humidity is positive near the

surface, compared to OPNL (Fig. 5f), and the analysis

increments between air humidity and soil moisture act in

the same direction (or sign) (Fig. 6b). This, there is a

positive soil moisture analysis increment on average via

data assimilation. In combination, both of the analysis

increments of temperature and humidity explain a wetter

soil in the assimilation experiments with soil moisture

added as a control state.

Overall, the ensemble structure of the experiments

with soil moisture as a control analysis is comparable

with previous research, which further demonstrates

that the experiment design and implementation with

GSI-EnKF are appropriate for studying strongly coupled

land–atmosphere data assimilation. We note that this

study does not evaluate the ensemble structure with the

change of various localization and inflation parame-

ters. In the future, one may explore these parameters

for optimal assimilation of soil moisture data in EnKF.

b. Verification of the analyses

In this section, we focus on the evaluation of the

analysis from each 6-h cycle. As mentioned, we consider

FIG. 6. Temporal correlation of the analysis increments between the variables of bottom-layer atmospheric

temperature, humidity, winds (T1, Q1, U1, andV1), and soil moisture from the top to the bottom layers (i.e., S1, S2,

S3, and S4). The analysis increments are obtained every 6 h during 1–28 Jul 2018 from VarSM_CONV (all-time

results), while the correlation values of the day (night) time results are computed according to the analysis in-

crements valid at 0000 and 1800 UTC (0600 and 1200 UTC).
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the first week of the experiments as spinup and then

evaluate the land and atmospheric analyses during

8–28 July 2018.

The analyses of the surface top 10-cm soil moisture

and root-zone 10–100-cm soil moisture from each 6-h

cycle are verified against the reference ISMN stations

(Fig. 7). Note that the 6-h surface soil moisture estimates

during 8–28 July are verified against all of the 20 ISMN

stations (see Fig. 1a), while the 6-h root-zone soil

moisture estimates in the same period are compared

against only 12 ISMN stations due to data availability.

For the surface 10-cm soil moisture, the sites for data

assimilation and verification are the same so that we can

better understand how well the new GSI-EnKF im-

plementation works. Figure 7 shows the statistics by

averaging the metrics of the bias, RMSE, and temporal

correlation over the ISMN stations. For the surface soil

moisture, there is a small bias of around 0.014 (m3m23)

in OPNL. Not only adding soil moisture as a control

state but also assimilating atmospheric data leads to a

wetter soil. This is consistent with Figs. 4a, 5, and 6,

which indicates that the data assimilation experiments

FIG. 7. Average of the bias, RMSE, and temporal correlation over the ISMN stations of the surface top 10-cm and

root-zone 10–100-cm soil moisture analyses against the ISMN stations during 8–28 Jul 2018.
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tend to be cooler and wetter at near-surface with a

wetter soil when compared with OPNL. Compared to

assimilating only conventional data or assimilating

2-m temperature data, assimilating 2-m humidity data

apparently causes the largest wet soil moisture anal-

ysis increments with degraded soil moisture analyses

in terms of bias, RMSE, and correlation coefficient.

VarwSM_CONV_T2Q2 shows the worst statistics in sur-

face soil moisture analyses. In contrast, the implemented

assimilation of in situ surface soilmoisture appears towork

well, as VarwSM_CONV_SM shows the smallest bias and

RMSE and the highest correlation among all the experi-

ments, with the relative improvement of 66%, 53%, and

59% in the bias, RMSE, and correlation, respectively, ac-

cording to Eqs. (8)–(10).

For root-zone soil moisture, there is a large dry bias of

around 20.09 (m3m23) in OPNL (Fig. 7b). It is found

that adding soil moisture as a control state and assimilating

near-surface temperature and humidity data result in a

wetter soil, which is the same as the surface soil mois-

ture and consistent with Figs. 4b and 4c. Consequently,

the VarwSM_CONV, VarwSM_CONV_T2, VarwSM_

CONV_Q2, and VarwSM_CONV_T2Q2 experiments

effectively reduce the dry OPNL soil moisture bias and

lead to a reduced RMSE. However, these experiments

also show the lowest correlation metric between the

experiments and the reference ISMN dataset (Fig. 7f).

This is mainly due to the bias correction, which, as a

result, modifies the temporal pattern of the soil mois-

ture time series at several stations (not shown). Future

work could be devoted to more extensive experiments

from months to years to understand the impact of

coupled data assimilation on root-zone soil moisture. It

is also noted that the degraded temporal correlation in

the surface and root-zone soil moisture estimates was

reported in several studies with assimilating near-

surface temperature and humidity into a land surface

model (Carrera et al. 2019; Munoz-Sabater et al. 2019).

In contrast, assimilating in situ surface soil moisture

leads to an improved temporal correlation of the root-

zone soil moisture analyses but degrades the analyses

in the sense of bias and RMSE. Apparently, the con-

clusion is not unanimous in terms of metrics. Whenever

the bias/RMSE in the root-zone soil moisture analyses

is reduced, the temporal variability degrades, and vice

versa. Further verification of atmospheric variables is

needed to understand how variations in soil moisture

analyses affect atmospheric forecasts.

We verify the atmospheric analysis from every 6-h

cycle during 8–28 July 2018 against the reference NAM

dataset. CNTL is first compared with OPNL over each

model layer (Fig. 8). Figures 8a–d show that the assim-

ilation of atmospheric conventional data leads to a bias

reduction in the analyses of temperature and humidity

over the lower troposphere but has a marginal to nega-

tive effect on the wind analyses. In terms of RMSE, the

results also confirm that the benefit of assimilating at-

mospheric conventional data is seen mainly in the lower

troposphere for temperature and humidity. However, it

is found that there is a consistent RMSE reduction in the

wind analyses throughout the troposphere. In general,

GSI-EnKF is shown to be useful on a regional scale.

The analyses of all other experiments are further

evaluated and compared with those of CNTL. Figure 9

shows the difference in the relative improvement be-

tween each assimilation experiment with respect to

CNTL averaged over all atmospheric levels and the

bottom 10 layers (i.e., below approximately 750hPa).

The results indicate that adding soil moisture as a con-

trol state appears to be helpful in most cases. For as-

similating conventional data, VarwSM_CONV always

leads to a positive reduction in the bias error and RMSE

compared to CNTL (Fig. 9). For the experiments that

assimilate 2-m temperature and humidity, adding soil

moisture as a control state reduces the bias and RMSE

of the temperature, humidity, and wind forecasts in

general, except for a marginal degradation in the bias of

humidity forecasts. Furthermore, when comparing the

effect of assimilating various types of surface observa-

tions, 2-m humidity data appear to be themost beneficial

on improving forecasts, especially for those of temper-

ature and humidity. The assimilation of 2-m tempera-

ture data is helpful for the temperature analyses but

has a marginal to negative effect on other variables. The

assimilation of 2-m humidity data leads to the largest

bias and RMSE reduction in the temperature and hu-

midity analyses compared to the assimilation of 2-m

temperature or surface soil moisture data. The effect of

assimilating in situ soil moisture data seems to be neutral

to slightly positive, which is mainly due to the observa-

tion size. Nonetheless, the assimilation of these surface

data has only a marginal effect on the wind analyses.

Therefore, below we will focus on the evaluation of

temperature and humidity analyses and forecasts.

Figure 10 shows the statistics averaged from the

temperature and humidity analyses of the experiments

every 12h during 8–28 July 2018 verified against the

reference radiosonde measurements. As is obvious,

CNTL is in a good agreement with the reference com-

pared to OPNL (Figs. 10a,c,e,g). It is also found that the

effect of adding soil moisture as a control state and as-

similating surface data is confinedmostlywithin the lower

troposphere (e.g., below 700hPa). Adding soil moisture

as a control state often leads to the error reduction in the

temperature and humidity forecasts. For example, we can

see that experiment 5 (i.e., VarwSM_CONV) results in
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more bias and RMSE reduction than CNTL. In the ex-

periments that assimilate 2-m temperature and humidity

data, adding soil moisture is often helpful (e.g., see

experiment 2 vs 6 or experiment 3 vs 7). Furthermore, at

the levels of 850 and 925hPa, assimilating 2-m temperature

data reduces the RMSE in the temperature analysis but

degrades the RMSE for the humidity analysis. In contrast,

assimilation of 2-m humidity data reduces the RMSE for

both the temperature and humidity analyses below

850hPa. The findings from the sounding verification gen-

erally agree with those from Figs. 8 and 9. The limited

effect of 2-m temperature data assimilation on other var-

iables could be related to the observation error used in the

GSI-EnKF and certainly requires further investigation.

FIG. 8. Verification of atmospheric analyses every 6 h during 8–28 Jul 2018 against the NAM dataset for the OPNL and CNTL experi-

ments. The relative improvement according to Eqs. (8) and (9) averaged over all 40 layers and the bottom 10 layers (B10) is reported.
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Figure 11 shows the statistics averaged over all surface

stations for the 2-m temperature and humidity analyses

every 6 h during 8–28 July 2018 verified against the

METAR stations. The overall results are consistent

with the verification against the NAM and radiosonde

measurements shown in Figs. 8–10. OPNL shows a

warm temperature bias and a dry humidity bias, and

CNTL reduces not only the bias but also RMSE. The

benefit of adding soil moisture as a control state is

seen mostly in the paired comparison (i.e., with and

FIG. 9. Difference in the relative improvement (RI) between each data assimilation experiment and CNTL based on analysis verifi-

cation against NAM every 6 h during 8–28 Jul 2018. A positive value in the RI difference indicates that an experiment has a better model

skill than CNTL. RI differences are computed based on the results (a)–(h) of all layers and (i)–(p) those of the bottom 10 layers

(Bottom-10L).
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FIG. 10. Model skill in atmospheric temperature and humidity analyses evaluated against radiosonde

measurements every 12 h during 8–28 Jul 2018. (left) The bias and RMSE, averaged over the study domain and

the analysis cycles, and (right) the difference in the model skill in experiments 2–10 minus that in experi-

ment CNTL.
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without soil moisture as a control state), including CNTL

versus VarwSM_CONV, VarwoSM_CONV_T2 versus

VarwSM_CONV_T2, and VarwoSM_CONV_Q2 versus

VarwSM_CONV_Q2. Among various types of data, the

impact of assimilating 2-m temperature is seen mainly on

the temperature analysis, and that of assimilating soil

moisture data is marginal on the analyses of temperature

and humidity. In contrast, the impact of assimilating 2-m

humidity data is found for reducing the most bias and

RMSEof temperature and humidity analyses. In terms of

RMSE, VarwSM_CONV_Q2 shows a relative improve-

ment of 15% and 18% in the temperature and humidity

analyses, respectively, compared to ONPL.

c. Verification of the forecasts

The temperature forecasts from the experiments initial-

ized at 0000UTCduring 8–28 July 2018 are verified against

the sounding data. Note that here we consider the forecasts

with a lead time of 12, 36, and 60h to be at night because

they are valid at 1200 UTC or 0600 locally, while the

forecasts with a lead time of 24, 48, and 72h are valid in the

daytime. For brevity, we show the statistics averaged over

the domain and the cycles (i.e., 21 cycles) with various lead

times for only the selected experiments (Figs. 12a–d,f–i)

and then present the statistics for all the experiments that

are further averaged over the lead times of 12, 24, 36, 48,

60, and 72h (Figs. 12e,j). Due to the marginal effect on

the analyses from the assimilation of 2-m temperature

data, we have skipped the forecast runs for experiments

VarwoSM_CONV_T2 and VarwSM_CONV_T2.

Figure 12a shows a strongly diurnal variability inOPNL

in terms of bias below 850hPa, with a cold bias during the

night and a warm bias during the day. Nonetheless, the

average over the various lead times below 850hPa is pos-

itive, consistent with Fig. 10a. The largest OPNL RMSE

also appears below 850hPa (Fig. 12f). The results indicate

that the impact of assimilating conventional data is con-

fined mainly below 850hPa and up to a lead time of 48h

(Figs. 12b,g). Compared to the improvement in the anal-

ysis (Figs. 10a,c,e,g), the improvement in the forecasts in

CNTL is small. It is likely that the effect of assimilating

sounding data is strong near the sites but relatively weak

farther from the sites, and therefore the benefit of assimi-

lating sounding data quickly decreases with forecast lead

times due to the spread of errors. For all other assimilation

experiments, we find that adding soil moisture as a control

state and assimilating 2-mhumidity data further extend the

impact of data assimilation up to 72h (Figs. 12c–d,h–i).

FIG. 11. Averaged reduction over all theMETAR stations in terms of absolute bias and RMSE by comparing the

2-m temperature and humidity analyses in the data assimilation experiments with those of OPNL every 6 h during

8–28 Jul 2018. The higher the reduction, the better the model skill in the assimilation experiments. The gray (black)

dashed lines indicate the score level of CNTL (VarwSM_CONV).
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FIG. 12. Verification of temperature forecasts against radiosondemeasurements based on the experiments initialized at 0000UTC every

day 8–28 Jul 2018. (a),(f) The OPNL bias/RMSE and (b)–(d),(g)–(i) the difference between the selected assimilation experiments with

respect to OPNL. (e),(j) The difference between the metrics of experiments 1–10 minus those in OPNL, averaged over the lead times of

12, 24, 36, 48, 60, and 72 h.
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However, the additional forecast improvements are

seen mainly below 850hPa and in the daytime (i.e.,

0000 UTC) while the forecasts at night (i.e., 1200 UTC)

can be slightly degraded. On average, the bias of the

temperature forecasts is reduced by22.3% (degradation),

3.5%, and 5.8% in experiments CTNL, VarwSM_CONV,

and VarwSM_CONV_Q2, respectively, over the levels

of 850 and 925hPa and at various lead times (Fig. 12e).

FIG. 13. As in Fig. 12, but for humidity forecasts.
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In terms ofRMSE, the error is reducedby 1.1%, 2.0%, and

2.1% for these three experiments (Fig. 12j).

Similarly, Fig. 13 shows the verification of the hu-

midity forecasts against the radiosonde measurements.

OPNL shows a dry bias and a large RMSE, particularly

below 850hPa (Figs. 13a,f). Assimilating conventional

sounding data (CNTL) results in only a marginal impact

on the humidity forecasts. Adding soil moisture as a

FIG. 14. Verification of temperature forecasts against the reference NAM dataset based on the experiments initialized every day at

0000 UTC 8–28 Jul 2018 over the bottom 15 model layers. (a)–(d),(f)–(i) The OPNL bias/RMSE and the difference between the selected

assimilation experiments with respect to OPNL. (e),(j) The difference between the metrics of the assimilation experiments minus those in

OPNL, averaged over the bottom 10 atmospheric layers.
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control state and assimilating 2-m humidity data are still

considered beneficial and lead to forecast improvement up

to 72h. However, there is slight degradation around

700hPa. On average over various lead times at the levels

of 850 and 925hPa, the bias of the humidity forecasts is

reduced by 2%, 7%, and 17% inCNTL,VarwSM_CONV,

and VarwSM_CONV_Q2, respectively (Fig. 13e), while

the RMSE reduction is 0%, 1%, and 3% for these three

experiments (Fig. 13j).

To explore the assimilation experiments in more de-

tails, we verify the temperature forecasts against the

reference NAM analysis over each model grid point

FIG. 15. As in Fig. 14, but for humidity forecasts.

2882 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:03 PM UTC



below the bottom 15 atmospheric layers (i.e., below

550hPa). Similar to the verification against the sounding

data, we show detailed results for only the selected ex-

periments, including OPNL, CNTL, VarwSM_CONV,

and VarwSM_CONV_Q2 and the averaged statistics over

various lead times for all other experiments. Figures 14 and

15 show the verification for temperature and humidity

forecasts, respectively. The overall findings are quite con-

sistent with those from Figs. 12 and 13. The impact of data

assimilation is confined mostly to the lower atmosphere

below layer 10, or 750hPa. CTNL can improve forecasts

up to a lead time of 24h, while adding soil moisture as a

control state and assimilating 2-m humidity can extend the

benefit of data assimilation up to at least 72h. In terms of

temperature, the relative improvement in terms of RMSE

over the bottom 10 layers and various lead times is 4.8%,

9.5%, and 15.6% for CNTL, VarwSM_CONV, and

VarwSM_CONV_Q2, respectively (Fig. 14j). Similarly,

the average relative improvement in terms of RMSE for

humidity is 2%, 5%, and 11% for these three experi-

ments (Fig. 15j). To further highlight the difference

between experiments with and without soil moisture a

control state, the RMSE averaged over various lead

times and the bottom 10 atmospheric layers is reported

in Table 2. As is evident, the inclusion of soil moisture

as a control analysis state improves forecasts compared

to the use of only conventional atmospheric analysis

states.

Figures 16 and 17 show the temperature and humidity

forecasts verified against the 2-m METAR data. The

overall results are consistent with the verification against

the radiosonde and NAM analysis. The benefit of data

assimilation in CNTL lasts up to a day, while adding soil

moisture as a control state and assimilating 2-m humidity

obviously further improve the forecasts for up to at least

3 days. In terms of temperature, the RMSE is on average

reduced by 3%, 6%, and 10% inCNTL,VarwSM_CONV,

and VarwSM_CONV_Q2, respectively (Fig. 16f). For

humidity in these three experiments, the RMSE is on av-

erage reduced by 2%, 6%, and 12% (Fig. 17f). The aver-

aged RMSE is computed in Table 3 to underscore the

benefit of adding soil moisture as a control analysis state.

The table clearly shows that adding soil moisture as a

control state improves the forecasts of 2-m temperature

and humidity in each paired experiment (i.e., with and

without the soil moisture control state).

4. Summary and discussion

To examine the impacts of strongly coupled land–

atmosphere data assimilation on short-range weather

forecasting, we included soil moisture as a control anal-

ysis variable. Then, we assimilated surface soil moisture

into the Gridpoint Statistical Interpolation (GSI) with an

ensemble Kalman filter (EnKF). A series of experiments

using the Weather Research and Forecasting (WRF)

Model with the Noah land surface model was conducted

by assimilating 2-m temperature and humidity and surface

soil moisture data, in addition to assimilating conventional

data including radiosondes, radar-derived winds, and sur-

face pressure measurements. It was found that under the

GSI-EnKF structure, adding soil moisture as a control

state and assimilating 2-m humidity data are particularly

helpful for improving forecasts, while the impact of as-

similating 2-m temperature (surface soil moisture) data is

positive mainly for temperature (soil moisture) analyses.

The assimilation of conventional data results in an im-

proved forecast of temperature and humidity up to mostly

a day, while the inclusion of soil moisture as a control state

and the assimilation of 2-m humidity further extend the

improved forecast up to at least 3 days.

Moreover, when combining the statistics from both

surface and root-zone soil moisture, there is a dry bias in

the top 1-m soil moisture estimates. We found that the

inclusion of soil moisture as a control state reduces the

bias and RMSE in the top 1-m soil moisture estimates

but degrades the correlation metric that measures soil

moisture temporal variability. In contrast, the assimila-

tion of the in situ surface soil moisture data improves

mainly the temporal correlation metric. As this study

finds that adding soil moisture as a control state is

overall beneficial on near-surface weather forecasts, it

TABLE 2. RMSEaveraged over various forecast lead times (i.e., from 6, 12, 18, . . . , 72 h) and bottom10 atmospheric layers according to the

verification against NAM in Figs. 14j and 15j. The relative improvement (RI) is reported according to Eq. (9).

Temperature Humidity

RMSE (K) RI (%) RMSE (g kg21) RI (%)

OPNL 1.459 — 1.912 —

CNTL 1.388 4.8% 1.867 2.4%

VarwSM_CONV 1.321 9.5% 1.811 5.3%

VarwoSM_CONV_Q2 1.300 10.9% 1.758 8.1%

VarwSM_CONV_Q2 1.232 15.6% 1.707 10.8%

VarwoSM_CONV_T2Q2 1.303 10.7% 1.763 7.8%

VarwSM_CONV_T2Q2 1.229 15.7% 1.708 10.7%
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appears that the bias and RMSE metrics are a more

direct indicator than the correlation metric for evaluat-

ing the soil moisture impact of weather forecasts. In

previous coupled data assimilation studies (de Rosnay

et al. 2013; Carrera et al. 2019; Munoz-Sabater et al.

2019), there is a common finding that assimilating at-

mospheric data tends to degrade the soil moisture

modeling skills. However, such degraded skills lead to

FIG. 16. Verification of 2-m temperature forecasts against METAR based on the experi-

ments initialized every day at 0000 UTC 8–28 Jul 2018. (a),(d) The bias and RMSE in OPNL,

averaged over the study domain and all the cycles. (b),(e) The relative improvement (RI) in

each assimilation experiment over various lead times. (c),(f) The average RI over all the lead

times every 6 h from 6 to 72.
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improved near-surface weather forecasts. The reasons

resulting in this finding is still an open question.

Nevertheless, these previous studies often empha-

sized the correlation metrics rather than RMSE or

bias in the evaluation of soil moisture estimates.

Based on the results in this paper, we suggest that the

metric of bias and RMSE should be used together with

the metric of temporal correlation for evaluating soil

moisture estimates in future coupled data assimilation

research.

Finally, we note that the experiment configurations in

this study are not fully compatible with the operational

NWP systems. First, due to computation constraints, our

study area covers the U.S. Great Plains, where land–

atmosphere interactions are relatively strong. To bet-

ter understand the spatial variability of the impact of

FIG. 17. As in Fig. 16, but for 2-m humidity forecasts.
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strongly coupled data assimilation (SCDA) on weather

forecasts, one needs to expand the experiments to a

larger spatial extent, from a continent to the entire

world. Second, like several studies involving algorithm

implementation (e.g., Wang et al. 2008a,b; Whitaker

et al. 2008; Lien et al. 2016), we assimilated only a subset

of all available conventional atmospheric measurements

into WRF-Noah. Given a large volume of satellite ra-

diances is routinely assimilated into operational sys-

tems, further studies are needed to prove the forecast

improvements due to the implementation of SCDA in

the operational NWP environment. Nonetheless, the

investigation and implementation in this study demon-

strate the potential application of SCDA in operational

NWP. Third, this study assimilated in situ surface soil

moisture measurements and demonstrated its effec-

tiveness in reducing the bias and RMSE of surface soil

moisture forecasts with GSI-EnKF under the frame-

work of SCDA. However, in situ soil moisture data are

limited by sample size (even globally) and data latency

in a real-time operational environment. Future work

should devote to the assimilation of satellite-based soil

moisture observations under SCDA.
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